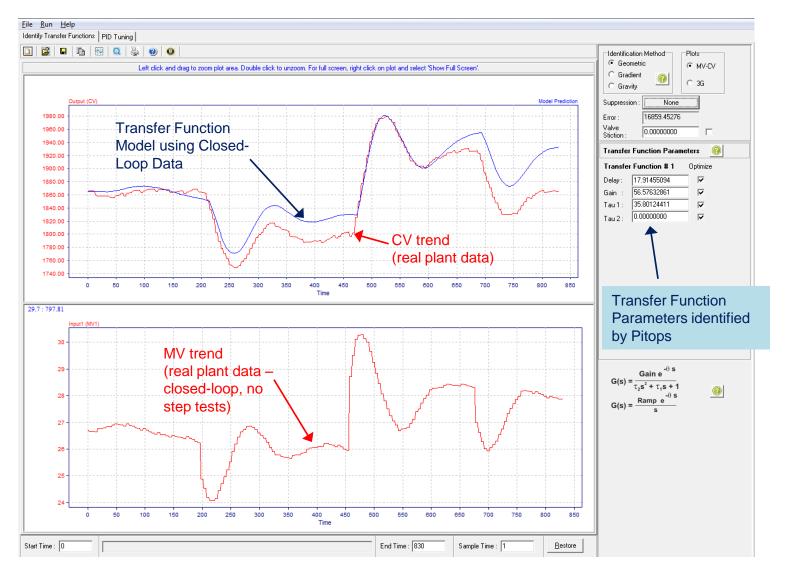
PITOPS System Identification & PID Tuning Optimization

A New Process Control Technological Breakthrough Impacting Industry and Colleges

PID Tuning, APC (Advanced Process Control) Design, System Identification

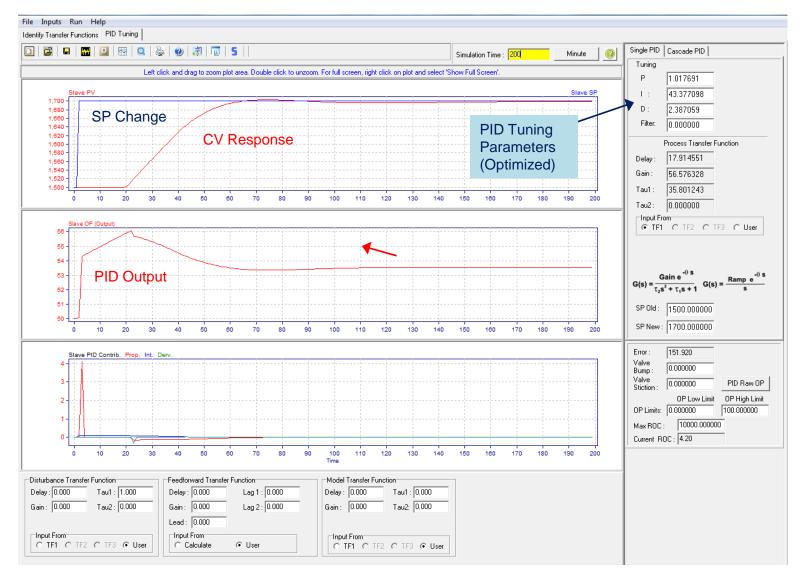

- See the next few slides illustrating
 - Identification of system dynamics (transfer functions) using closed-loop short-duration data amidst noise and unmeasured disturbances
 - Optimization of PID tuning for Slave PIDs, Cascade
 PIDs and all complex PIDs in DCS/PLC.
- See the power, uniqueness and simplicity of Pitops
- Improve Plant Operation and Control Quality
- Improve Process Control Teaching/Training

Use Excel File Containing Plant Data (or use OPC communication to DCS/PLC)

Get Excel file with plant data from plant historian, or use OPC to directly collect data from any DCS/PLC

	1	Timestamp	AC7777.PV	FC7777.SP
	2		PPM	KG/HR
	3		Composition	Gas Flow SP
	4	1/11/2012 11:00	1865.624218	26.70827938
	5	1/11/2012 11:01	1865.816931	26.70827938
	6	1/11/2012 11:02	1866.009482	26.66449574
	7	1/11/2012 11:03	1866.026692	26.66449574
	8	1/11/2012 11:04	1865.985292	26.66449574
	9	1/11/2012 11:05	1865.943729	26.66449574
·	10	1/11/2012 11:06	1865.902329	26.66449574
	11	1/11/2012 11:07	1865.860929	26.666217
	12	1/11/2012 11:08	1865.819529	26.666217
	13	1/11/2012 11:09	1865.778129	26.666217
	14	1/11/2012 11:10	1865.736729	26.666217
	15	1/11/2012 11:11	1865.695328	26.666217
	16	1/11/2012 11:12	1865.653928	26.63603313
	17	1/11/2012 11:13	1860.346917	26.63603313
	18	1/11/2012 11:14	1858.689125	26.63603313
	19	1/11/2012 11:15	1858.676461	26.63603313
	20	1/11/2012 11:16	1858.663635	26.63603313
	21	1/11/2012 11:17	1858.650809	26.76411484
	22	1/11/2012 11:18	1858.637983	26.76411484
	23	1/11/2012 11:19	1858.625157	26.76411484
	24	1/11/2012 11:20	1858.612332	26.76411484
	25	1/11/2012 11:21	1858.599506	26.76411484
	26	1/11/2012 11:22	1858.58668	26.77162262
	27	1/11/2012 11:23	1858.573854	26.77162262
	28	1/11/2012 11:24	1858.561028	26.77162262
	29	1/11/2012 11:25	1858.548202	26.77162262
	20	4/44/0040 44-00	4050 505070	00 77400000

Read Excel Data from Plant into Pitops Identify Closed-Loop Transfer Function



© Copyright PiControl Solutions- All Rights Reserved

Chose PID Eqn., PID Scan Rate, Set CV and MV Range matching DCS/PLC


Single PID	ngle PID Config											
PID Scan	Time							CV Range				
C 1/12	0 0 1/10	C 1/2	С з	C 10	C 30	09	90	Low : 40.0	00	High :	5000	
C 1/60	O 1/4	• 1	C 4	O 15	C 45	0	120	MV Range				
C 1/20	C 1/3	C 2	C 5	C 20	C 60	0		Low : 0.00	0	High :	100.000	
Auto Deriv	Auto Derivative Filtering ON/OFF : Off C On PID Tuning Time Unit: Minute											
C A0	P(dE +Ed	$\frac{1}{1}$ + D	(dE) / dt)		C A4	P dE 4	Fqt/I + Dq	(dE) / dt				
⊕ B0 ■	•	•			○ A4 P dE + E dt / I + D d(dE) / dt ○ B4 P dE + E dt / I + D d(dPV) / dt							
0 00						\bigcirc C4 P dPV + E dt / I + D d(dPV) / dt						
C A1	100/PB (dE			dt)		C A5		+EdtI + Dd(d				
C B1	100/PB (dE	-				0 B5		⊦EdtI+Dd(d				
C C1	100/PB (dPV	-				C C5		+EdtI + Dd(d				
C A2	P (dE + E dt			,,		C A6		3 dE + E dt / I +		/dt		
C B2	P (dE + E dt					C B6		dE +Edt/I +				
C C2	P (dPV + E d	-				C C6	-	3 dPV + E dt / I	-			
C A3	100/PB (dE			t)		C A7		3 dE + E dt I +				
C B3	100/PB (dE				(B7		dE + E dt I +				
C C3	100/PB (dPV			-		C C7	-	3 dPV + E dt I +		-		
									~	<u>о</u> к	X Cancel	

Optimize PID Tuning for SP Change

© Copyright PiControl Solutions- All Rights Reserved

Add Disturbances, Noise and Optimize PID Tuning for SP Change + Disturbances

© Copyright PiControl Solutions- All Rights Reserved

Pitops Uniqueness

- Multivariable identification- can handle multiple input and multiple outputs.
- Uses Closed-Loop Data (does not need Open-Loop Step Tests).
- Works well even if noise and unmeasured disturbances are present.
- Requires short data window for successful analysis.
- Calculated PID tuning parameters match exactly with DCS/PLC.
- Pitops identification and simulation looks like the real DCS/PLC trends.
- Displays PID output trends explicitly to ensure safe control action.
- Equipped with latest 3G (geometric/gradient/gravity) technology for rejecting noise and disturbances and calculating true transfer functions.
- Super-fast execution and super compact code size.
- Pitops technology is far superior to ARMAX identification, Step Response Coefficient models, Ziegler Nichols, Lambda tuning, frequency domain, Z-discrete domain etc.
- Pitops is far superior and easier than any other product or technology.
- Pitops 4GRG algorithm and technology is a revolutionary, novel and a 21st century genuine breakthrough.
- Does not need advanced education degrees, does not need complex math and theory.
- Visit <u>www.PiControlSolutions.Com</u>, or send an email to <u>Info@PiControlSolutions.Com</u>.